This Addictive Commonly Used Food Feeds Cancer Cells, Triggers Weight Gain, and Promotes Premature Aging

Death by sugar may not be an overstatement—evidence is mounting that sugar is THE MAJOR FACTOR causing obesity and chronic disease.

Dr. Mercola's Comments:

Is sugar a sweet old friend that is secretly plotting your demise?

There is a vast sea of research suggesting that it is. Science has now shown us, beyond any shadow of a doubt, that sugar in your food, in all its myriad of forms, is taking a devastating toll on your health.

The single largest source of calories for Americans comes from sugar—specifically high fructose corn syrup. Just take a look at the sugar consumption trends of the past 300 years:[1]

- In 1700, the average person consumed about 4 pounds of sugar per year.
- In 1800, the average person consumed about 18 pounds of sugar per year.
- In 1900, individual consumption had risen to 90 pounds of sugar per year.
- In 2009, more than 50 percent of all Americans consume one-half pound of sugar PER DAY—translating to a whopping 180 pounds of sugar per year!

Sugar is loaded into your soft drinks, fruit juices, sports drinks, and hidden in almost all processed foods—from bologna to pretzels to Worcestershire sauce to cheese spread. And now most infant formula has the sugar equivalent of one can of Coca-Cola, so babies are being metabolically poisoned from day one if taking formula.

No wonder there is an obesity epidemic in this country.

Today, 32 percent of Americans are obese and an additional one-third are overweight. Compare that to 1890, when a survey of white males in their fifties revealed an obesity rate of just 3.4 percent. In 1975, the obesity rate in America had reached 15 percent, and since then it has doubled.

Carrying excess weight increases your risk for deadly conditions such as heart disease, kidney disease and diabetes.

In 1893, there were fewer than three cases of diabetes per 100,000 people in the United States. Today, diabetes strikes almost 8,000 out of every 100,000 people.[1]

You don’t have to be a physician or a scientist to notice America’s expanding waistline. All you have to do is stroll through a shopping mall or a schoolyard, or perhaps glance in the mirror.

Sugars 101 -- Basics of How to Avoid Confusion on this Important Topic
It is easy to become confused by the various sugars and sweeteners. So here is a basic overview:

- Dextrose, fructose and glucose are all monosaccharides, known as simple sugars. The primary difference between them is how your body metabolizes them. Glucose and dextrose are essentially the same sugar. However, food manufacturers usually use the term “dextrose” in their ingredient list.

- The simple sugars can combine to form more complex sugars, like the disaccharide sucrose (table sugar), which is half glucose and half fructose.

- High fructose corn syrup (HFCS) is 55 percent fructose and 45 percent glucose.

- Ethanol (drinking alcohol) is not a sugar, although beer and wine contain residual sugars and starches, in addition to alcohol.

- Sugar alcohols like xylitol, glycerol, sorbitol, maltitol, mannitol, and erythritol are neither sugars nor alcohols but are becoming increasingly popular as sweeteners. They are incompletely absorbed from your small intestine, for the most part, so they provide fewer calories than sugar but often cause problems with bloating, diarrhea and flatulence.

- Sucralose (Splenda) is NOT a sugar, despite its sugar-like name and deceptive marketing slogan, “made from sugar.” It’s a chlorinated artificial sweetener in line with aspartame and saccharin, with detrimental health effects to match.

- Agave syrup, falsely advertised as “natural,” is typically HIGHLY processed and is usually 80 percent fructose. The end product does not even remotely resemble the original agave plant.

- Honey is about 53 percent fructose[2], but is completely natural in its raw form and has many health benefits when used in moderation, including as many antioxidants as spinach.

- Stevia is a highly sweet herb derived from the leaf of the South American stevia plant, which is completely safe (in its natural form). Lo han (or luohanguo) is another natural sweetener, but derived from a fruit.

All Sugars are Not Equal

Glucose is the form of energy you were designed to run on. Every cell in your body, every bacterium—and in fact, every living thing on the Earth—uses glucose for energy.

But as a country, sucrose is no longer the sugar of choice. It's now fructose.

If your diet was like that of people a century ago, you’d consume about 15 grams per day—a far cry from the 73 grams per day the typical person gets from sweetened drinks. In vegetables and fruits, it’s mixed in with vitamins, minerals, enzymes, and beneficial phytonutrients, all which moderate the negative metabolic effects. Amazingly, 25 percent of people actually consume more than 130 grams of fructose per day.

Making matters worse, all of the fiber has been removed from processed foods, so there is essentially no nutritive value at all. And the very products most people rely on to lose weight—the low-fat diet foods—are often the ones highest in fructose.

It isn’t that fructose itself is bad—it is the MASSIVE DOSES you’re exposed to that make it dangerous.

There are two overall reasons fructose is so damaging:
Your body metabolizes fructose in a much different way than glucose. The entire burden of metabolizing fructose falls on your liver. People are consuming fructose in enormous quantities, which has made the negative effects much more profound.

The explosion of soda consumption is the major cause of this. Today, 55 percent of sweeteners used in food and beverage manufacturing are made from corn, and the number one source of calories in America is soda, in the form of high fructose corn syrup.

Food and beverage manufacturers began switching their sweeteners from sucrose to corn syrup in the 1970s when they discovered that HFCS was not only far cheaper to make, it’s about 20 percent sweeter than conventional table sugar that has sucrose.

HFCS contains the same two sugars as sucrose but is more metabolically risky to you, due to its chemical form. The fructose and the glucose are not bound together in HFCS, as they are in table sugar, so your body doesn’t have to break it down. Therefore, the fructose is absorbed immediately, going straight to your liver.

Too Much Fructose Creates a Metabolic Disaster in Your Body

Dr. Robert Lustig, Professor of Pediatrics in the Division of Endocrinology at the University of California, San Francisco, has been a pioneer in decoding sugar metabolism. His work has highlighted some major differences in how different sugars are broken down and used by the human body.

I highly recommend watching Lustig’s lecture in its entirety if you want to learn how fructose is ruining your health biochemically.

As I mentioned earlier, after eating fructose, most of the metabolic burden rests on your liver. This is NOT the case with glucose, of which your liver breaks down only 20 percent. Nearly every cell in your body utilizes glucose, so it’s normally “burned up” immediately after consumption.

So where does all of this fructose go, once you consume it?

Onto your thighs. It is turned into FAT (VLDL and triglycerides), which means more fat deposits throughout your body.

Eating Fructose is Far Worse than Eating Fat

However, the physiological problems of fructose metabolism extend well beyond a couple of pant sizes:

- Fructose elevates uric acid, which decreases nitric oxide, raises angiotensin, and causes your smooth muscle cells to contract, thereby raising your blood pressure and potentially damaging your kidneys.[1]

 Increased uric acid also leads to chronic, low-level inflammation, which has far-reaching consequences for your health. For example, chronically inflamed blood vessels lead to heart attacks and strokes; also, a good deal of evidence exists that some cancers are caused by chronic inflammation. (See the next section for more about uric acid.)

- Fructose tricks your body into gaining weight by fooling your metabolism—it turns off your body’s appetite-control system. Fructose does not appropriately stimulate insulin, which in turn does not suppress ghrelin (the “hunger hormone”) and doesn’t stimulate leptin (the “satiety hormone”), which together result in your eating more and developing insulin resistance.[3] [4]

- Fructose rapidly leads to weight gain and abdominal obesity (“beer belly”), decreased HDL, increased LDL, elevated triglycerides, elevated blood sugar, and high blood pressure—i.e., classic metabolic syndrome.

- Fructose metabolism is very similar to ethanol metabolism, which has a multitude of toxic effects, including NAFLD (non-alcoholic fatty liver disease). It’s alcohol without the buzz.

These changes are not seen when humans or animals eat starch (or glucose), suggesting that fructose is a “bad carbohydrate” when consumed in excess of 25 grams per day. It is probably the one factor responsible for the partial success of many “low-carb” diets.

One of the more recent findings that surprised researchers is that glucose actually accelerates fructose absorption, making the potential health risks from HFCS even more profound.[1]

You can now see why fructose is the number one contributing factor to the current obesity epidemic.

Is Uric Acid the New Cholesterol?

By now you are probably aware of the childhood obesity epidemic in America—but did you know about childhood hypertension?
Until recently, children were rarely diagnosed with high blood pressure, and when they were, it was usually due to a tumor or a vascular kidney disease.

In 2004, a study showed hypertension among children is *four times higher than predicted*: 4.5 percent of American children have high blood pressure. Among overweight children, the rate is 10 percent. It is thought that obesity is to blame for about 50 percent of hypertension cases in adolescents today.[1]

Even more startling is that 90 percent of adolescents who have high blood pressure have elevated uric acid levels.

This has led researchers to ask, what does uric acid have to do with obesity and high blood pressure?

In his book, *The Sugar Fix: The High-Fructose Fallout That is Making You Fat and Sick*, Dr. Robert J. Johnson makes a compelling argument for a previously unrecognized connection between excess sugar consumption and high uric acid levels. However, he promotes artificial sweeteners as an alternative to sugar and makes other recommendations that I don’t agree with.

Dr. Johnson is a conventional physician who has not accepted large parts of natural medicine, however, he is one of the leading researchers defining the extent of fructose toxicity. He has spent many years of his life dedicating himself to uncover this mystery.

There are more than 3,500 articles to date showing a strong relationship between uric acid and obesity, heart disease, hypertension, stroke, kidney disease, and other conditions. In fact, a number of studies have confirmed that people with elevated serum uric acid are at risk for high blood pressure, even if they otherwise appear to be perfectly healthy.

Uric acid levels among Americans have risen significantly since the early half of the 20th Century. In the 1920s, average uric acid levels were about 3.5 ml/dl. By 1980, average uric acid levels had climbed into the range of 6.0 to 6.5 ml/dl and are probably much higher now.

How Does Your Body Produce Uric Acid?

It’s a byproduct of cellular breakdown. As cells die off, DNA and RNA degrade into chemicals called purines. Purines are further broken down into uric acid.

Fructose increases uric acid through a complex process that causes cells to burn up their ATP rapidly, leading to "cell shock" and increased cell death. After eating excessive amounts of fructose, cells become starved of energy and enter a state of shock, just as if they have lost their blood supply. Massive cellular die-off leads to increased uric acid levels.

And cells that are depleted of energy become inflamed and more susceptible to damage from oxidative stress. Fat cells actually become "sickly," bloating up with excessive amounts of fat.

There is a simple, inexpensive blood test for determining your uric acid level, which I recommend you have done as part of your routine health checkups. Your level should be between 3.0 and 5.5 mg/dl, optimally.

There is little doubt in my mind that your uric acid level is a more potent predictor of cardiovascular and overall health than your total cholesterol level is. Yet virtually no one is screening for this.

Now that you know the truth you don’t have to be left out in the cold, as this is a simple and relatively inexpensive test that you can get at any doctor’s office. Odds are very good your doctor is clueless about the significance of elevated uric acid levels, so it will not likely be productive to engage in a discussion with him unless he is truly an open-minded truth seeker.

Merely get your uric acid level, and if it is over 5 then eliminate as much fructose as you can (also eliminate all beer), and retest your level in a few weeks.

Sugar Sensitization Makes the Problem Even WORSE!

There is yet another problem with sugar—a self-perpetuating one.

According to Dr. Johnson[1], sugar activates its own pathways in your body—those metabolic pathways become "upregulated." In other words, the more sugar you eat, the more effective your body is in absorbing it; and the more you absorb, the more damage you’ll do.

You become “sensitized” to sugar as time goes by, and more sensitive to its toxic effects as well.

The flip side is, when people are given even a brief sugar holiday, sugar sensitization rapidly decreases and those metabolic pathways become "downregulated." Research tells us that even two weeks without consuming sugar will cause your body to be less reactive to it.

Try it for yourself! Take a two-week sugar sabbatical and see how different you feel.
Keep in mind that fruits also contain fructose, although an ameliorating factor is that whole fruits also contain vitamins and other antioxidants that reduce the hazardous effects of fructose.

Juices, on the other hand, are nearly as detrimental as soda, because a glass of juice is loaded with fructose, and a lot of the antioxidants are lost.

It is important to remember that fructose alone isn’t evil as fruits are certainly beneficial. But when you consume high levels of fructose it will absolutely devastate your biochemistry and physiology. Remember the AVERAGE fructose dose is 70 grams per day which exceeds the recommend limit by 300 percent.

So please BE CAREFUL with your fruit consumption. You simply MUST understand that because HFCS is so darn cheap, it is added to virtually every processed food. Even if you consumed no soda or fruit, it is very easy to exceed 25 grams of hidden fructose in your diet.

If you are a raw food advocate, have a pristine diet, and exercise very well, then you could be the exception that could exceed this limit and stay healthy.

Dr. Johnson has a handy chart, included below, which you can use to estimate how much fructose you’re getting in your diet. Remember, you are also likely getting additional fructose if you consume any packaged foods at all, since it is hidden in nearly all of them.

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Serving Size</th>
<th>Grams of Fructose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limes</td>
<td>1 medium</td>
<td>0</td>
</tr>
<tr>
<td>Lemons</td>
<td>1 medium</td>
<td>0.6</td>
</tr>
<tr>
<td>Cranberries</td>
<td>1 cup</td>
<td>0.7</td>
</tr>
<tr>
<td>Passion fruit</td>
<td>1 medium</td>
<td>0.9</td>
</tr>
<tr>
<td>Prune</td>
<td>1 medium</td>
<td>1.2</td>
</tr>
<tr>
<td>Apricot</td>
<td>1 medium</td>
<td>1.3</td>
</tr>
<tr>
<td>Guava</td>
<td>2 medium</td>
<td>2.2</td>
</tr>
<tr>
<td>Date (Deglet Noor style)</td>
<td>1 medium</td>
<td>2.6</td>
</tr>
<tr>
<td>Cantaloupe</td>
<td>1/8 of med. melon</td>
<td>2.8</td>
</tr>
<tr>
<td>Raspberries</td>
<td>1 cup</td>
<td>3.0</td>
</tr>
<tr>
<td>Clementine</td>
<td>1 medium</td>
<td>3.4</td>
</tr>
<tr>
<td>Kiwifruit</td>
<td>1 medium</td>
<td>3.4</td>
</tr>
<tr>
<td>Blackberries</td>
<td>1 cup</td>
<td>3.5</td>
</tr>
<tr>
<td>Star fruit</td>
<td>1 medium</td>
<td>3.6</td>
</tr>
<tr>
<td>Cherries, sweet</td>
<td>10</td>
<td>3.8</td>
</tr>
<tr>
<td>Strawberries</td>
<td>1 cup</td>
<td>3.8</td>
</tr>
<tr>
<td>Cherries, sour</td>
<td>1 cup</td>
<td>4.0</td>
</tr>
<tr>
<td>Pineapple</td>
<td>1 slice (3.5" x .75")</td>
<td>4.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Serving Size</th>
<th>Grams of Fructose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boysenberries</td>
<td>1 cup</td>
<td>4.6</td>
</tr>
<tr>
<td>Tangerine/mandarin orange</td>
<td>1 medium</td>
<td>4.8</td>
</tr>
<tr>
<td>Nectarine</td>
<td>1 medium</td>
<td>5.4</td>
</tr>
<tr>
<td>Peach</td>
<td>1 medium</td>
<td>5.9</td>
</tr>
<tr>
<td>Orange (navel)</td>
<td>1 medium</td>
<td>6.1</td>
</tr>
<tr>
<td>Papaya</td>
<td>1/2 medium</td>
<td>6.3</td>
</tr>
<tr>
<td>Honeydew</td>
<td>1/8 of med. melon</td>
<td>6.7</td>
</tr>
<tr>
<td>Banana</td>
<td>1 medium</td>
<td>7.1</td>
</tr>
<tr>
<td>Blueberries</td>
<td>1 cup</td>
<td>7.4</td>
</tr>
<tr>
<td>Date (Medjool)</td>
<td>1 medium</td>
<td>7.7</td>
</tr>
<tr>
<td>Apple (composite)</td>
<td>1 medium</td>
<td>9.5</td>
</tr>
<tr>
<td>Persimmon</td>
<td>1 medium</td>
<td>10.6</td>
</tr>
<tr>
<td>Watermelon</td>
<td>1/16 med. melon</td>
<td>11.3</td>
</tr>
<tr>
<td>Pear</td>
<td>1 medium</td>
<td>11.8</td>
</tr>
<tr>
<td>Raisins</td>
<td>1/4 cup</td>
<td>12.3</td>
</tr>
<tr>
<td>Grapes, seedless (green or red)</td>
<td>1 cup</td>
<td>12.4</td>
</tr>
<tr>
<td>Mango</td>
<td>1/2 medium</td>
<td>16.2</td>
</tr>
<tr>
<td>Apricots, dried</td>
<td>1 cup</td>
<td>16.4</td>
</tr>
<tr>
<td>Figs, dried</td>
<td>1 cup</td>
<td>23.0</td>
</tr>
</tbody>
</table>
In addition to limiting your intake of fructose, you should eliminate all sweetened beverages and fruit juices (including all artificial sweeteners) and drink only pure water and raw milk.

You can buy pure glucose (dextrose) as a sweetener for about $1 a pound. It is only 70% as sweet as sucrose, so you’ll end up using a bit more of it for the same amount of sweetness, making it slightly more expensive than sucrose—but still well worth it for your health as it has ZERO grams of fructose.

Remember that glucose can be used directly by every cell in your body and as such is far safer than the metabolic poison fructose.

Beer is also a good beverage to AVOID since it increases uric acid levels, just like fructose does, resulting in many of the same toxic effects.

All alcoholic beverages cause you to produce excess uric acid (and block your kidneys from excreting it), but beer seems to have a more pronounced effect on uric acid levels because it’s a rich source of guanosine, the type of purine that is most readily absorbed by the body.

76 Additional Ways Sugar Can Ruin Your Health

In addition to throwing off your body’s homeostasis and wreaking havoc on your metabolic processes, excess sugar has a number of other significant consequences.

Nancy Appleton, PhD, author of the book *Lick the Sugar Habit*[^5], contributed an extensive list of the many ways sugar can ruin your health from a vast number of medical journals and other scientific publications.

1. Sugar can suppress your immune system and impair your defenses against infectious disease.[^6] [^7]
2. Sugar upsets the mineral relationships in your body: causes chromium and copper deficiencies and interferes with absorption of calcium and magnesium.[^8] [^9] [^10] [^11]
3. Sugar can cause a rapid rise of adrenaline, hyperactivity, anxiety, difficulty concentrating, and crankiness in children.[^12] [^13]
4. Sugar can produce a significant rise in total cholesterol, triglycerides and bad cholesterol and a decrease in good cholesterol.[^14] [^15] [^16] [^17]
5. Sugar causes a loss of tissue elasticity and function.[^18]
6. Sugar feeds cancer cells and has been connected with the development of cancer of the breast, ovaries, prostate, rectum, pancreas, biliary tract, lung, gallbladder and stomach.[^19] [^20] [^21] [^22] [^23] [^24] [^25]
7. Sugar can increase fasting levels of glucose and can cause reactive hypoglycemia.[^26] [^27]
8. Sugar can weaken eyesight.[^28] 1
9. Sugar can cause many problems with the gastrointestinal tract including: an acidic digestive tract, indigestion, malabsorption in patients with functional bowel disease, increased risk of Crohn’s disease, and ulcerative colitis.[^29] [^30] [^31] [^32] [^33]
10. Sugar can cause premature aging.[^34] In fact, the single most important factor that accelerates aging is insulin, which is triggered by sugar. 1
11. Sugar can lead to alcoholism.[^35]
12. Sugar can cause your saliva to become acidic, tooth decay, and periodontal disease.[^36] [^37] [^38]
13. Sugar contributes to obesity.[^39] 1
14. Sugar can cause autoimmune diseases such as: arthritis, asthma, and multiple sclerosis.[^40] [^41] [^42]
15. Sugar greatly assists the uncontrolled growth of Candida Albicans (yeast infections).[^43]
16. Sugar can cause gallstones.[^44]
17. Sugar can cause appendicitis.[^45]
18. Sugar can cause hemorrhoids.[^46]
19. Sugar can cause varicose veins.[^47]
20. Sugar can elevate glucose and insulin responses in oral contraceptive users. [48]

21. Sugar can contribute to osteoporosis. [49]

22. Sugar can cause a decrease in your insulin sensitivity thereby causing an abnormally high insulin levels and eventually diabetes. [50] [51] [52]

23. Sugar can lower your Vitamin E levels. [53]

24. Sugar can increase your systolic blood pressure. [54]

25. Sugar can cause drowsiness and decreased activity in children. [55]

26. High sugar intake increases advanced glycation end products (AGEs), which are sugar molecules that attach to and damage proteins in your body. AGEs speed up the aging of cells, which may contribute to a variety of chronic and fatal diseases. [56] 1

27. Sugar can interfere with your absorption of protein. [57]

28. Sugar causes food allergies. [58]

29. Sugar can cause toxemia during pregnancy. [59]

30. Sugar can contribute to eczema in children. [60]

31. Sugar can cause atherosclerosis and cardiovascular disease. [61] [62]

32. Sugar can impair the structure of your DNA. [63]

33. Sugar can change the structure of protein and cause a permanent alteration of the way the proteins act in your body. [64] [65]

34. Sugar can make your skin age by changing the structure of collagen. [66]

35. Sugar can cause cataracts and nearsightedness. [67] [68]

36. Sugar can cause emphysema. [69]

37. High sugar intake can impair the physiological homeostasis of many systems in your body. [70]

38. Sugar lowers the ability of enzymes to function. [71]

39. Sugar intake is higher in people with Parkinson’s disease. [72]

40. Sugar can increase the size of your liver by making your liver cells divide, and it can increase the amount of fat in your liver, leading to fatty liver disease. [73] [74]

41. Sugar can increase kidney size and produce pathological changes in the kidney such as the formation of kidney stones. [75] [76] Fructose is helping to drive up rates of kidney disease. 1

42. Sugar can damage your pancreas. [77]

43. Sugar can increase your body's fluid retention. [78]

44. Sugar is enemy #1 of your bowel movement. [79]

45. Sugar can compromise the lining of your capillaries. [80]

46. Sugar can make your tendons more brittle. [81]

47. Sugar can cause headaches, including migraines. [82]

48. Sugar can reduce the learning capacity, adversely affect your children's grades and cause learning disorders. [83] [84]

49. Sugar can cause an increase in delta, alpha, and theta brain waves, which can alter your ability to think clearly. [85]

50. Sugar can cause depression. [86]

51. Sugar can increase your risk of gout. [87]

52. Sugar can increase your risk of Alzheimer’s disease. [88] MRI studies show that adults 60 and older who have high uric acid
are four to five times more likely to have vascular dementia, the second most common form of dementia after Alzheimer’s.1

53. Sugar can cause hormonal imbalances such as: increasing estrogen in men, exacerbating PMS, and decreasing growth hormone[89][90][91][92]

54. Sugar can lead to dizziness.[93]

55. Diets high in sugar will increase free radicals and oxidative stress.[94]

56. A high sucrose diet of subjects with peripheral vascular disease significantly increases platelet adhesion.[95]

57. High sugar consumption by pregnant adolescents can lead to a substantial decrease in gestation duration and is associated with a twofold-increased risk for delivering a small-for-gestational-age (SGA) infant [96][97]

58. Sugar is an addictive substance.[98]

59. Sugar can be intoxicating, similar to alcohol.[99]

60. Sugar given to premature babies can affect the amount of carbon dioxide they produce.[100]

61. Decrease in sugar intake can increase emotional stability.[101]

62. Your body changes sugar into 2 to 5 times more fat in the bloodstream than it does starch.[102]

63. The rapid absorption of sugar promotes excessive food intake in obese subjects [103]

64. Sugar can worsen the symptoms of children with attention deficit hyperactivity disorder (ADHD).[104]

65. Sugar adversely affects urinary electrolyte composition.[105]

66. Sugar can impair the function of your adrenal glands.[106]

67. Sugar has the potential of inducing abnormal metabolic processes in normal, healthy individuals, thereby promoting chronic degenerative diseases.[107]

68. Intravenous feedings (IVs) of sugar water can cut off oxygen to your brain.[108]

69. Sugar increases your risk of polio.[109]

70. High sugar intake can cause epileptic seizures.[110]

71. Sugar causes high blood pressure in obese people.[111]

72. In intensive care units, limiting sugar saves lives.[112]

73. Sugar may induce cell death.[113]

74. In juvenile rehabilitation centers, when children were put on low sugar diets, there was a 44 percent drop in antisocial behavior.[114]

75. Sugar dehydrates newborns.[115]

76. Sugar can cause gum disease.[116]

It should now be crystal clear just how damaging sugar is. You simply cannot achieve your highest degree of health and vitality if you are consuming a significant amount of it.

Fortunately, your body has an amazing ability to heal itself when given the basic nutrition it needs, and your liver has an incredible ability to regenerate. If you start making changes today, your health WILL begin to improve, returning you to the state of vitality that nature intended.

References:

[4] Park A. “All sugars aren’t the same: Glucose is better, study says,” *Time Magazine*, April 21, 2009

• Cleave, T. and Campbell, G. (Bristol, England: Diabetes, Coronary Thrombosis and the Saccharine Disease: John Wright and Sons, 1960)
• Pamplona, R., et al. Mechanisms of Glycation in Atherogenesis. Medical Hypotheses. 1990:00:00 174_181
• Cerami, A., Vlassara, H., and Brownlee, M. Glucose and Aging. Scientific American. May 1987:00:00 90
• Goulart, F. S. Are You Sugar Smart? American Fitness. March_April 1991:00:00 34_38, Milwaukee, WI
• Goulart, F. S. Are You Sugar Smart? American Fitness. March_April 1991:00:00 34_38. Milwaukee, WI
• ibid. fluid retention
• ibid. bowel movement
• ibid. compromise the lining of the capillaries
• Nash, J. Health Contenders. Essence. Jan 1992; 23:00 79_81
• Schauss, A. Diet, Crime and Delinquency. (Berkley Ca: Parker House, 1981)
• ibid,44
Yudkin, J. Metabolic Changes Induced by Sugar in Relation to Coronary Heart Disease and Diabetes. Nutrition and Health. 1987;5(1-2):5-8

Ibid.

Ibid.

Nutrition Health Review. Fall 85 changes sugar into fat faster than fat

Arieff, A. I. Veterans Administration Medical Center in San Francisco. San Jose Mercury; June 12/86. IVs of sugar water can cut off oxygen to the brain

Sandler, Benjamin P. Diet Prevents Polio. Milwakuee, WI,:The Lee Foundation for for Nutritional Research, 1951

Murphy, Patricia. The Role of Sugar in Epileptic Seizures. Townsend Letter for Doctors and Patients. May, 2001 Murphy Is Editor of Epilepsy Wellness Newsletter, 1462 West 5th Ave., Eugene, Oregon 97402

